Canonical quantization:
Take 3-manifold Ms to be of the form

$$M_3 \cong \sum x R$$

Riemann surface
Canonical quantization \rightarrow Hilbert space K_Z
Recall:
 $CS(A) = \frac{K}{8\pi^2} \int Tr(A \wedge dA + \frac{2}{3} \wedge A \wedge A)$
Taking $M_3 = \sum x R$ and choosing the
gauge $A_0 = 0$, gives
 $Z = \frac{K}{8\pi^2} \int dt \int \sum z^{ij} Tr A_i \frac{d}{dt} A_j$
 \rightarrow Poisson brackets:
 $[A^a_i(x), A^b_{ij}(y)] = \frac{4\pi^2}{K} \cdot \sum_{ij} S^{ab} S^2(x-y)$
Due to gauge choice, system is subject to:
 $\frac{SX}{SA_0} = 0 \iff z^{ij} F^a_{ij} = 0$ (*)

We quantize the system by first constraining
the phase space
$$\rightarrow$$
 symplecting quotient:
recall $\mathbf{A}_{\Sigma} \cong \Omega'(\Sigma, q)$ symplectic
manifold with non-degenerate symp. form
 $\omega(\alpha_1/S) = -\frac{\kappa}{8\pi^2} \int \operatorname{Tr}(\alpha_1/S), \alpha_1/S \in \Omega'(\Sigma, q)$
Then $\mathcal{Y}_{\Sigma} \cong \operatorname{Map}(\Sigma, G)$ acts an \mathcal{A}_{Σ}
by gauge transformations
Imposing the constraint (*) is then
equivalent to defining the quotient space:
 $\mathcal{M}_{Z} = F^{-1}(c)/\mathcal{G}_{\Sigma}$
"symplectic quotient"
The symplectic structure on \mathcal{M}_{Σ} is given by
 $\omega_{X}(\alpha_1,\beta_1) = \omega_{A}(\alpha_1,\beta_1)$ for $\overline{\alpha}_1\beta \in T_{A}\mathcal{M}_{Z}$
 \rightarrow definition is independent of choice of
 A, α_1, β

Construction of the connection First, we need to describe the connetion V on Ly, with curvature -iw. Define $\nabla_{u} \mathcal{Y}(A) = \int d^{2}_{z} \, u_{z}^{q} \frac{D}{DA_{2}^{q}(z)} \mathcal{Y}(A) ,$ $\nabla_{\overline{u}} \Psi(A) = \int_{\overline{v}} d^{2} z \ \overline{u}_{\overline{z}}^{\alpha} \frac{D}{DA_{\overline{z}}^{\alpha}(z)} \Psi(A),$ for 4 and the adjoint valued (1,0) and (0,1) forms on \sum and $d^2z = idz d\overline{z}$. = 2111 ~ we need $\left[\frac{D}{DA^{q}_{\omega}(\omega)}, \frac{D}{DA^{b}_{z}(z)}\right] = -i\frac{K}{4\pi} \int_{ab} \int_{z\overline{\omega}} (z, \omega)$ $\begin{bmatrix} \frac{D}{DA_{\gamma}^{a}(z)}, \frac{D}{DA_{\omega}^{b}(\omega)} \end{bmatrix} = \begin{bmatrix} \frac{D}{DA_{\gamma}^{a}(z)}, \frac{D}{DA_{\omega}^{b}(\omega)} \end{bmatrix} = 0$ -> take: $\frac{D}{DA_2} = \frac{S}{SA_2} - \frac{K}{8\pi} A_{\overline{2}}$ $\frac{D}{DA_{\overline{2}}} = \frac{S}{SA_{\overline{2}}} + \frac{K}{8\pi}A_{2}$

$$\rightarrow holomorphic sections have to satisfy:
$$\frac{D}{DA_{z}} = 0, \quad \forall \in H^{\circ}(A_{z}, L_{z}) = \mathcal{H}_{dy}^{\circ}$$
To study the objects $\widetilde{H}_{q}|_{\eta} = H^{\circ}(M_{y}, x),$
we need to further restrict to \mathcal{G}_{z} -inv.
Subspace of $\mathcal{H}_{q}|_{\eta}$.

$$\rightarrow He condition for of_{z}$$
-invariance is

$$(-D_{\overline{z}} \frac{D}{DA_{y}^{-}(2)} + \frac{\kappa}{4\pi} \delta_{ab} F_{\overline{z}}^{b}(2)) = 0$$
where $F_{\overline{z}z}^{2}(2)$ is the curvature of the connection A , and $D_{\overline{z}} = \frac{\partial}{\partial \overline{z}} + A_{\overline{z}}$.
We will now construct the connection on

$$\widetilde{\mathcal{H}}_{q}|_{\eta} \rightarrow \mathcal{H}_{y}$$
Note that the space $A_{\overline{z}}$ is infinite-dim,
while M_{z} has complex dimension

$$dim_{z} M_{\overline{z}} = (g-1) \cdot dim G$$$$

This comes from the fact that flat connections are characterized by "Wilson lines" (holonomies around cycles of Σ) Jis a complex manifold -> write S^(1,0) and S^(0,1) respectively for the I and I operators on T. Explicitly : $S^{(1,0)} = \int S t_{\overline{z}\overline{z}} \frac{S}{S t_{\overline{z}\overline{z}}}$ $S^{(o_1)} = \int St_{22} \frac{S}{St_{22}}$ Working "upstairs" on A, the projectively flat connection on Ha is $\delta^{\mathcal{H}_{Q}} = \delta^{(1,0)} - \frac{it}{4} \cdot \frac{4\pi}{K} \int \delta^{\mathcal{T}} \int \delta^{\mathcal{T}} \frac{D}{2\pi} \frac{D}{DA_{z}^{\alpha}(z)} \frac{D}{DA_{z}^{\alpha}(z)}$